Higher-order Discrete Maximum Principle for 1d Diffusion-reaction Problems

نویسنده

  • TOMÁŠ VEJCHODSKÝ
چکیده

Sufficient conditions for the validity of the discrete maximum principle (DMP) for a 1D diffusion-reaction problem −u + κu = f with the homogeneous Dirichlet boundary conditions discretized by the higher-order finite element method are presented. It is proved that the DMP is satisfied if the lengths h of all elements are shorter then one-third of the length of the entire domain and if κh is small enough. The bounds for κh are precisely specified in terms of the relative length of the elements. The obtained conditions are simple and easy to verify.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the design of higher-order FEM satisfying the discrete maximum principle

A fully algebraic approach to the design of nonlinear high-resolution schemes is revisited and extended to quadratic finite elements. The matrices resulting from a standard Galerkin discretization are modified so as to satisfy sufficient conditions of the discrete maximum principle for nodal values. In order to provide mass conservation, the perturbation terms are assembled from skew-symmetric ...

متن کامل

Discrete maximum principle for parabolic problems solved by prismatic finite elements

In this paper we analyze the discrete maximum principle (DMP) for a nonstationary diffusion-reaction problem solved by means of prismatic finite elements and θmethod. We derive geometric conditions on the shape parameters of prismatic partitions and time-steps which guarantee validity of the DMP. The presented numerical tests illustrate the sharpness of the obtained conditions. MSC: 65M60, 65M2...

متن کامل

Integrals of Motion for Discrete-Time Optimal Control Problems

We obtain a discrete time analog of E. Noether’s theorem in Optimal Control, asserting that integrals of motion associated to the discrete time Pontryagin Maximum Principle can be computed from the quasiinvariance properties of the discrete time Lagrangian and discrete time control system. As corollaries, results for first-order and higher-order discrete problems of the calculus of variations a...

متن کامل

The discrete maximum principle for Galerkin solutions of elliptic problems

This paper provides equivalent characterization of the discrete maximum principle for Galerkin solutions of general linear elliptic problems. The characterization is formulated in terms of the discrete Green’s function and the elliptic projection of the boundary data. This general concept is applied to the analysis of the discrete maximum principle for the higher-order finite elements in one-di...

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007